17.06.2019
Posted by 

Электроэнергия Электроэнергия Электроэнергия — физический термин, широко распространённый в технике и в быту для определения количества электрической энергии, выдаваемой генератором в электрическую сеть или получаемой из сети потребителем. Основной единицей измерения выработки и потребления электрической энергии служит киловатт-час (и кратные ему единицы). Для более точного описания используются такие параметры, как напряжение, частота и количество фаз (для переменного тока), номинальный и максимальный электрический ток. Электрическая энергия является также товаром, который приобретают участники оптового рынка (энергосбытовые компании и крупные потребители-участники опта) у генерирующих компаний и потребители электрической энергии на розничном рынке у энергосбытовых компаний.

Взаимное влияние качества электроэнергии и электрооборудования. ПОКАЗАТЕЛИ КАЧЕСТВА ЭЛЕКТРОЭНЕРГИИ И ИХ ОПРЕДЕЛЕНИЕ Обеспечение надежного качества.

Цена на электрическую энергию выражается в рублях и копейках за потребленный киловатт-час (коп/кВтч, руб/кВтч) либо в рублях за тысячу киловатт-часов (руб/тыс кВтч). Последнее выражение цены используется обычно на оптовом рынке.

География присутствия ОАО 'ОТП Банк' на российском рынке. Организационная структура. Организационная структура системы управления персоналом. Характеристика ОАО ' ОТП Банк. Организационная структура управления. Высшим органом управления Банка является Общее. Организационная структура оао отп банка.

Динамика мирового производства электроэнергии по годам. Промышленное производство электроэнергии Промышленное производство электроэнергии В эпоху индустриализации подавляющий объем электроэнергии вырабатывается промышленным способом на электростанциях. Доля вырабатываемой электроэнергии в России (2000 г) Доля вырабатываемой электроэнергии в мире Теплоэлектростанции (ТЭC) 67%, 582,4 млрд кВтч Гидроэлектростанции (ГЭС) 19%; 164,4 млрд кВтч Атомные станции (АЭС) 15%; 128,9 млрд кВтч В последнее время в связи с экологическими проблемами, дефицитом ископаемого топлива и его неравномерного географического распределения становится целесообразным вырабатывать электроэнергию способом используя ветроэнергетические установоки, солнечные батарей, малые газогенераторы. В некоторых государствах, например в Германии, приняты специальные программы, поощряющие инвестиции в производство электроэнергии домохозяйствами.

Предлагаемая книга и посвящена приемам работы с осциллографом. Приводятся разнообразные примеры наблюдения и измерения электрических сигналов радиотехнических цепях. Анализ на экране осциллографа формы и прохождения сигналов через различные цепи делает наглядными процессы настройки радиотехнических устройств и поиск в них неисправностей. Осциллограф ваш помощник работать осциллографом.

Электрическая сеть - совокупность подстанций, распределительных устройств и соединяющих их линий электропередачи, предназначенная для передачи и распределения электрической энергии. Электрическая сеть - совокупность подстанций, распределительных устройств и соединяющих их линий электропередачи, предназначенная для передачи и распределения электрической энергии. Классификация электрических сетей Электрические сети принято классифицировать по назначению (области применения), масштабным признакам, и по роду тока.

Назначение, область применения Сети общего назначения: электроснабжение бытовых, промышленных, сельскохозяйственных и транспортных потребителей. Сети автономного электроснабжения: электроснабжение мобильных и автономных объектов (транспортные средства, суда, самолёты, космические аппараты, автономные станции, роботы и т. П.) Сети технологических объектов: электроснабжение производственных объектов и других инженерных сетей. Контактная сеть: специальная сеть, служащая для передачи электроэнергии на движущиеся вдоль неё транспортные средства (локомотив, трамвай, троллейбус, метро). История российской, да и пожалуй, мировой электроэнергетики, берет начало в 1891 году, когда выдающийся ученый Михаил Осипович Доливо-Добровольский осуществил практическую передачу электрической мощности около 220 кВт на расстояние 175 км. Результирующий КПД линии электропередачи, равный 77,4%, оказался сенсационно высоким для такой сложной многоэлементной конструкции.

Такого высокого КПД удалось достичь благодаря использованию трехфазного напряжения, изобретенного самим ученым. История российской, да и пожалуй, мировой электроэнергетики, берет начало в 1891 году, когда выдающийся ученый Михаил Осипович Доливо-Добровольский осуществил практическую передачу электрической мощности около 220 кВт на расстояние 175 км. Результирующий КПД линии электропередачи, равный 77,4%, оказался сенсационно высоким для такой сложной многоэлементной конструкции.

Такого высокого КПД удалось достичь благодаря использованию трехфазного напряжения, изобретенного самим ученым. В дореволюционной России, мощность всех электростанций составляла лишь 1,1 млн кВт, а годовая выработка электроэнергии равнялась 1,9 млрд кВт.ч. После революции, по предложению В. Ленина был развернут знаменитый план электрификации России ГОЭЛРО. Он предусматривал возведение 30 электростанций суммарной мощностью 1,5 млн.

КВт, что и было реализовано к 1931 году, а к 1935 году он был перевыполнен в 3 раза. В 1940 г суммарная мощность советских электростанций составила 10,7 млн кВт, а годовая выработка электроэнергии превысила 50 млрд кВт.ч, что в 25 раз превышало соответствующие показатели 1913 года.

После перерыва, вызванного Великой Отечественной войной, электрификация СССР возобновилась, достигнув в 1950 г уровня выработки 90 млрд кВт.ч. В 1940 г суммарная мощность советских электростанций составила 10,7 млн кВт, а годовая выработка электроэнергии превысила 50 млрд кВт.ч, что в 25 раз превышало соответствующие показатели 1913 года. После перерыва, вызванного Великой Отечественной войной, электрификация СССР возобновилась, достигнув в 1950 г уровня выработки 90 млрд кВт.ч. В 50-е годы XX века, в ход были пущены такие электростанции, как Цимлянская, Гюмушская, Верхне-Свирская, Мингечаурская и другие. К середине 60-х годов, СССР занимал второе место в мире по выработке электроэнергии после США3. Основные технологические процессы в электроэнергетике. Генерация электрической энергии Генерация электрической энергии Генерация электроэнергии — это процесс преобразования различных видов энергии в электрическую на индустриальных объектах, называемых электрическими станциями.

Гост на качество электроэнергии

В настоящее время существуют следующие виды генерации: Тепловая электроэнергетика. В данном случае в электрическую энергию преобразуется тепловая энергия сгорания органических топлив. К тепловой электроэнергетике относятся тепловые электростанции (ТЭС), которые бывают двух основных видов: Конденсационные (КЭС, также используется старая аббревиатура ГРЭС); Теплофикационные (теплоэлектроцентрали, ТЭЦ). Теплофикацией называется комбинированная выработка электрической и тепловой энергии на одной и той же станции. Передача электрической энергии от электрических станций до потребителей осуществляется по электрическим сетям.

Электросетевое хозяйство — естественно-монопольный сектор электроэнергетики: потребитель может выбирать, у кого покупать электроэнергию (т.е. Энергосбытовую компанию), энергосбытовая компания может выбирать среди оптовых поставщиков (производителей электроэнергии), однако сеть, по которой поставляется электроэнергия, как правило, одна, и потребитель технически не может выбирать электросетевую компанию.

Линии электропередачи представляют собой металлический проводник, по которому проходит электрический ток. В настоящее время практически повсеместно используется переменный ток. Электроснабжение в подавляющем большинстве случаев — трёхфазное, поэтому линия электропередачи, как правило, состоит из трёх фаз, каждая из которых может включать в себя несколько проводов. Конструктивно линии электропередачи делятся на воздушные и кабельные. Передача электрической энергии от электрических станций до потребителей осуществляется по электрическим сетям.

Электросетевое хозяйство — естественно-монопольный сектор электроэнергетики: потребитель может выбирать, у кого покупать электроэнергию (т.е. Энергосбытовую компанию), энергосбытовая компания может выбирать среди оптовых поставщиков (производителей электроэнергии), однако сеть, по которой поставляется электроэнергия, как правило, одна, и потребитель технически не может выбирать электросетевую компанию. Линии электропередачи представляют собой металлический проводник, по которому проходит электрический ток. В настоящее время практически повсеместно используется переменный ток. Электроснабжение в подавляющем большинстве случаев — трёхфазное, поэтому линия электропередачи, как правило, состоит из трёх фаз, каждая из которых может включать в себя несколько проводов. Конструктивно линии электропередачи делятся на воздушные и кабельные.

Воздушные ЛЭП подвешены над поверхностью земли на безопасной высоте на специальных сооружениях, называемых опорами. Как правило, провод на воздушной линии не имеет поверхностной изоляции; изоляция имеется в местах крепления к опорам. На воздушных линиях имеются системы грозозащиты.

Основным достоинством воздушных линий электропередачи является их относительная дешевизна по сравнению с кабельными. Также гораздо лучше ремонтопригодность (особенно в сравнении с бесколлекторными КЛ): не требуется проводить земляные работы для замены провода, ничем не затруднён визуальный осмотр состояния линии. Воздушные ЛЭП подвешены над поверхностью земли на безопасной высоте на специальных сооружениях, называемых опорами. Как правило, провод на воздушной линии не имеет поверхностной изоляции; изоляция имеется в местах крепления к опорам. На воздушных линиях имеются системы грозозащиты. Основным достоинством воздушных линий электропередачи является их относительная дешевизна по сравнению с кабельными.

Также гораздо лучше ремонтопригодность (особенно в сравнении с бесколлекторными КЛ): не требуется проводить земляные работы для замены провода, ничем не затруднён визуальный осмотр состояния линии. Кабельные линии (КЛ) проводятся под землёй.

Электрические кабели имеют различную конструкцию, однако можно выявить общие элементы. Сердцевиной кабеля являются три токопроводящие жилы (по числу фаз).

Кабели имеют как внешнюю, так и междужильную изоляцию. Обычно в качестве изолятора выступает трансформаторное масло в жидком виде, или промасленная бумага. Токопроводящая сердцевина кабеля, как правило, защищается стальной бронёй. С внешней стороны кабель покрывается битумом.

Кабельные линии (КЛ) проводятся под землёй. Электрические кабели имеют различную конструкцию, однако можно выявить общие элементы. Сердцевиной кабеля являются три токопроводящие жилы (по числу фаз).

Кабели имеют как внешнюю, так и междужильную изоляцию. Обычно в качестве изолятора выступает трансформаторное масло в жидком виде, или промасленная бумага. Токопроводящая сердцевина кабеля, как правило, защищается стальной бронёй. С внешней стороны кабель покрывается битумом.

Страница 8 из 33 КАЧЕСТВО ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ 4.1. ОБЩИЕ ПОЛОЖЕНИЯ Системы электроснабжения и электроприемники выполняют такими, чтобы наилучшее функционирование достигалось при питании их от однофазной или симметричной трехфазной системы напряжением заданной амплитуды и синусоидальной формы частотой 50 Гц. Однако в реальных электрических сетях по известным причинам возникают отклонения от идеальных параметров, что приводит к ухудшению работы установок потребителей электроэнергии, проявляющемуся в технико-экономическом ущербе. Невнимание к качеству электроэнергии в процессе эксплуатации ЭС приводит к прогрессирующему расстройству электроснабжения и нарушениям работы электроприемников.

Качество Электрической Энергии Презентация

Отклонение показателей качества электроэнергии является и результатом воздействия на ЭС электроустановок потребителей. Показатели качества электроэнергии можно разделить на две группы. К первой группе относятся отклонения частоты и напряжения от номинальных, устраняемые системами электроснабжения. Ко второй — колебания частоты и напряжения, несимметрия и искажение формы кривых напряжения и тока, проявляющиеся главным образом в зонах, на которые влияют особые, вызывающие эти искажения электроприемники.

Презентация

Степень этого влияния определяется соотношением мощности этих электроприемников и параметров ЭС. Кроме того, имеются электроприемники, чувствительные к различного рода помехам. Условия, в которых возникают эти помехи, не постоянны, так как ЭС в сочетании с установками потребителей непрерывно развиваются: изменяются параметры систем, состав и мощность электроприемников.

Гост На Качество Электроэнергии

Поэтому качество электроэнергии является объектом контроля. Соблюдение качества электроэнергии связано с использованием: рациональной системы показателей качества, определяющих ограничения отклонений и электромагнитной совместимости оборудования, подключенного к общей сети; средств измерения, позволяющих без больших затрат труда оценивать качество электроэнергии и намечать обоснованные меры по его улучшению; технических средств повышения качества электроэнергии; методов оптимального управления качеством электроэнергии в ЭС. Отклонения от идеальных показателей должны ограничиваться. Поэтому существуют нормы на допустимые отклонения, зафиксированные в государственных стандартах на качество электроэнергии.

Качество Электроэнергии Презентация

Эти нормы приняты во всех развитых странах, и учитывая опыт и развитие систем электроснабжения и электропотребления, постепенно изменяются применительно к реальным условиям. В СССР показатели качества электроэнергии в точках сетей, к которым присоединяются приемники, нормируются ГОСТ 13109—87. Необходимо нормировать качество электроэнергии и в узлах ЭС, являющихся границами балансовой принадлежности сетей. Отклонения показателей качества электроэнергии от идеальных подразделяют на нормально- и максимально допустимые.

В течение 95% времени суток (22,8 ч) показатели качества электроэнергии не должны выходить за пределы нормально допустимых значений и в течение всего времени, включая послеаварийные режимы, они должны находиться в пределах максимально допустимых значений (табл. При аварийных ситуациях в ЭС допускается выход показателей качества за установленные пределы, в том числе снижение напряжения до нулевого уровня и отклонение частоты до ±5 Гц с последующим их восстановлением до допустимых для послеаварийных режимов максимальных значений.Розенкрон Я. К., Биманис В. Поурочные разработки по истории средних веков 6 класс.

Температурно-токовые защиты трансформаторов от аварийных и систематических перегрузок//Электротехника, 1985, № 8, С. Допустимые отклонения показателей качества электроэнергии Наименование показателя Допустимое значение показателя нормальное максимальное Отклонение частоты, Гц ±0,2 ±0,4 В послеаварийных режимах допускается отклонение частоты ±0,5. — 1 Гц, общая продолжительность за год не более 90 ч Отклонение напряжения (%) в электрической сети напряжением, кВ: При определении отклонения напряжения провалы напряжения и импульсы напряжения не учитывают ДО 1 ±5 ±10 6—20 — ±10 В переходном режиме допустимы кратковременные выходы отклонения напряжения за установленные пределы Размах колебаний напряжения (%) (см.